MLCQ God Class Tree Based Evaluation Models

Comparison Table

Model Accuracy Precision Recall F1-score
Logistic Regression 0.6285 0.3162 0.6221 0.4159
Random Forest 0.7952 0.5290 0.4214 0.4661
SVM 0.7425 0.4364 0.7161 0.5381
Decision Tree 0.6965 0.3497 0.4733 0.3994
Naive Bayes 0.6355 0.3453 0.7858 0.4772
Gradient Boosting 0.7523 0.4432 0.6128 0.5111
xgb 0.7826 0.4936 0.4877 0.4865

Bar Plot

Bar Plot

Evaluation Results

Logistic Regression

Random Forest

SVM

Decision Tree

Naive Bayes

Gradient Boosting

xgb