MLCQ God Class Metric Based Evaluation Models

Comparison Table

Model Accuracy Precision Recall F1-score
Logistic Regression 0.8250 0.5799 0.6819 0.6228
Random Forest 0.8180 0.5656 0.6666 0.6079
SVM 0.8054 0.5319 0.8172 0.6400
Decision Tree 0.7784 0.4888 0.5654 0.5207
Naive Bayes 0.8329 0.6985 0.3743 0.4818
Gradient Boosting 0.8194 0.5609 0.7409 0.6347
xgb 0.8138 0.5619 0.5881 0.5723

Bar Plot

Bar Plot

Evaluation Results

Logistic Regression

Random Forest

SVM

Decision Tree

Naive Bayes

Gradient Boosting

xgb